池州市贵池区乌沙镇新庄村 20MW 光伏 综合经济农业生态大棚集中并网发电项目

质量通病防治措施

批准: 根本

审核:记礼状

编制: 赵松.

常州正衡电力工程监理有限公司 2017年03月08日

目 录

1,	工程概况 •••••	1
2,	编制依据・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3、	监理控制措施 ••••••••••••••••••••••••••••••••••••	2

1、工程概况

1.1 工程名称

池州市贵池区乌沙镇新庄村 20MW 光伏综合经济农业生态大棚集中并网发电项目

1.2 工程地址

安徽省池州市乌沙镇新庄村

1.3 工程规模

拟建设 20WMp 地面光伏发电系统,共 18 区,由 18 台 1000KVA 场内箱式升压变压器将电压升压至 35KV。

1.4 投资规模

本工程投资约 30000.00 万元。

2、编制依据

- (1)、建设管理单位编制的《工程建设管理纲要》
- (2)、国家及行业有关法律法规
- (3)、《业主项目部标准化工作手册 110kV 及以上变电工程分册》(2014 年版)
- (4) 《施工项目部标准化工作手册 110kV 及以上变电工程分册》(2014 年版)
- (5) 《监理项目部标准化工作手册 110kV 及以上变电工程分册》(2014 年版)
- (6)、《建设工程项目管理规范》GB/T50326-2006
- (7)、《建设工程监理规范》GB50319-2013
- (8)、《电力建设工程监理规范》DL/T5434-2012
- (9)、《电力建设工程质量监督检查典型大纲》(光伏发电部分)电建质监[2011]92号
 - (10)、《输变电工程达标投产验收规程》DL5279-2012
 - (11)、《电力行业词汇第 6 部分新能源发电》DL/T1033.6-2014
 - (12)、《建设工程文件归档整理规范》GB/T50328-2014
 - (13)、《数码照片归档与管理规范》DA/T50-2014
 - (14)、《电力工程地基处理技术规程》DL/T5024-2005
- (15)、《电力建设施工质量验收及评价规程第1部分:土建工程》 DL/T5210.1-2012

- (16)、《电力建设土建工程施工技术检验规范》DL/T5710-2014
- (17)、《电力建设施工技术规范 第1部分: 土建结构工程》DL5190.1-2012
- (18)、《电能计量装置技术管理规程》DL/T448-2000
- (19)、《电气装置安装工程质量检验及评定规程》DL/T5161.1~5161.17-2002
- (20)、《电气装置安装工程 高压电器施工及验收规范》GB50147-2010
- (21)、《电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范》 GB50148-2010
 - (22)、《电气装置安装工程母线装置施工及验收规范》GB50149-2010
- (23)、《中华人民共和国工程建设标准强制性条文(电力工程部分)》(2011 年版)
 - (24)、《电气装置安装工程电气设备交接试验标准》GB50150-2006
 - (25)、《电气装置安装工程电缆线路施工及验收规范》GB50168-2006
 - (26)、《电气装置安装工程接地装置施工及验收规范》GB50169-2006
- (27)、《电气装置安装工程盘、柜及二次回路接线施工及验收规范》 GB50171-2012
- (28)、《110kV-1000kV 变电(换流)站土建工程施工质量验收及评定规程》 Q/GDW 183-2012
 - (29)、《电气装置安装工程低压电器施工及验收规范》GB50254-2014
 - (30)、《电气装置安装工程起重机电气装置施工及验收规范》GB50256-2014
- (31)、《起重机械安全管理人员和作业人员考核大纲》国质检特〔2013〕680 号
 - (32) 《光伏发电站接入电力系统技术规定 》 GB/T 19964-2012
 - (33)《光伏发电站无功补偿技术规范》GB/T 29321-2012
 - (34)《光伏发电工程验收规范》GB/T 50796-2012
 - (35) 《光伏发电站施工规范》GB50794-2012
 - (36)《光伏发电站设计规范》GB50797-2012
 - (37)《建设工程安全生产管理条例》2003年国务院令第393号
 - (38)《建筑起重机械安全监督管理规定》2008年建设部令第166号
 - (39)《电力安全生产监督管理办法》国家发改委第21号令
 - (40)《电力建设工程施工安全监督管理办法》国家发改委第28号令、电监安

全[2007]38号

- (41)《电力建设安全工作规程第3部分: 变电站》DL5009.3-2013
- (42)《电力设备典型消防规程》DL5027-2015
- (43) 《起重机械安全规程 第一部分总则》GB/T6067.1-2010
- (44)《火灾自动报警系统施工及验收规范》GB50166-2007
- (45)、与工程项目相关的建设单位管理文件
- (46)、监理招投标文件(监理大纲)及监理合同、施工图纸

3、监理工作内容

- 3.1 审查施工单位提交的《工程质量通病防治措施》。
- 3.2认真做好隐蔽工程和工序质量的验收签证,上道工序不合格时,不允许进入下一道工序施工。
- 3.3 对土建施工、设备安装、调整试验的重要工序和关键部位旁站监理,加强工程质量的平行检验,发现问题及时处理。
- 3.4 工程完工后,认真填写《临城下峪 42 兆瓦光伏发电项目质量通病防治工作评估报告》。

4、监理控制措施

根据《国家电网公司输变电工程质量通病防治工作要求及技术措施》国网基建质量(2010)19号的要求,对照相关质量通病防治的设计措施,在图纸预检时检查设计措施的落实情况,如发现有不符合要求或设计措施不到位的情况,在编制图纸预检记录时逐一记录,并在施工图会检会议中提出,督促设计单位落实相关措施。

结合本工程的具体情况,以及《国家电网公司输变电工程质量通病防治工作要求及技术措施》中的质量通病防治的施工措施,提出如下施工质量通病防治控制措施,尤其是在针对"渗、漏、裂、锈"等通病而采取的施工防治控制措施,监理工程师在施工过程中加强对控制措施的检查和落实,确保减少甚至消除质量通病的发生。

土建工程:

4.1 配电室、综合楼钢筋混凝土现浇楼板质量通病防治控制措施

- 1) 现浇板混凝土采用中粗砂。严把原材料质量关,优化配合比设计,适当减小水灰比。
- 2) 审查商品混凝土配合比,要求采用减水率高、分散性能好、对混凝土收缩影响较小的外加剂,其减水率不低于8%。
- 3)抽检混凝土的含砂率,应控制在 40%以内,每立方米混凝土粗骨料的用量不少于 1000kg,粉煤灰的掺量不宜大于水泥用量的 15%。
 - 4) 预拌混凝土进场时检查验收入模塌落度。
- 5) 混凝土浇筑之前对钢筋、模板安装质量进行验收。严格控制现浇板的厚度和现浇板中钢筋保护层的厚度,特别是板面负筋保护层厚度,不使负筋保护层过厚而产生裂缝,要求现场采用垫块支撑控制。
- 6) 重点检查验收雨蓬悬挑现浇板的负弯矩钢筋的保护层,浇筑混凝土时进行全过程 旁站监理,确保钢筋不移位。双层双向钢筋,要求施工人员设置钢筋撑脚,钢筋撑脚纵 横间距不大于 500mm,应交叉分布,并对上下层钢筋作有效固定。
- 7)检查验收线管布置质量,现浇板中的线管必须布置在钢筋网片之上(双层双向配筋时,布置在下层钢筋之上),交叉布线处应采用线盒,对线管的直径进行平行检验,线管的直径应小于 1/3 楼板厚度,沿预埋管线方向应增设 Φ 6@150、宽度不小于 450mm 的钢筋网带。严禁水管水平埋设在现浇板中。
- 8) 现浇板浇筑后,督促施工人员在终凝后进行覆盖和浇水养护,养护时间不得少于7d;对掺用缓凝型外加剂或有抗渗性能要求的混凝土,不得少于14d。夏季应适当延长养护时间,以提高抗裂性能。冬季应适当延长保温和脱模时间,使其缓慢降温,以防温度骤变、温差过大引起裂缝。
- 9) 现浇板养护期间,要求施工人员在混凝土强度小于 1.2MPa 时,不得进行后续施工。当混凝土强度小于 10MPa 时,不得在现浇板上吊运、堆放重物。吊运、堆放重物时应减轻对现浇板的冲击影响。
- 10)要求现浇板采用大块新模板支撑,检查验收模板安装质量,严格控制模板上口标高,对模板支撑钢管进行加密加固,模板接缝必须紧密咬合,杜绝漏浆现场。
- 11)模板支撑的选用必须经过计算,除满足强度要求外,还必须有足够的刚度、稳定性,平整度及光洁度。根据工期要求,配备足够数量的模板,保证按规范要求拆模。已拆除模板及其支架的结构,在混凝土强度达到设计要求的强度后方可承受全部使用荷载。

- 12)施工缝的位置和处理应严格执行规范要求和施工技术方案。后浇带的位置和混凝土浇筑应严格按设计要求和施工技术方案执行。后浇带应在其两侧混凝土龄期大于60d后再施工,浇筑时应采用补偿收缩混凝土,其混凝土强度应提高一个强度等级。
- 13) 混凝土浇筑时,对裂缝易发生部位和负弯矩筋受力最大区域,要求施工人员铺设临时活动跳板,扩大接触面,分散应力,避免上层钢筋受到踩踏而变形,并配备专人及时检查调整。
 - 14) 工程实体钢筋保护层检测时,应对悬臂构件的上部钢筋保护层厚度进行检测。

4.2 配电室、综合楼墙体质量通病防治控制措施

- 1) 砌筑砂浆应采用中砂。砌体工程所用的材料应有产品的合格证书、 产品性能检测报告。
- 2) 如防火墙采用蒸压灰砂砖、加气混凝土砌块的出釜停放期不宜小于 45d,至少不应小于 28d。 混凝土及轻骨料混凝土小型空心砌块的龄期不应小于 28d。
- 3)监理人员现场检查砌筑时块体材料的含水率。砌筑时块体材料表面不应有浮水,不得在饱和水状态下施工。
- 4)填充墙砌至接近梁底、板底时,应留有一定的空隙,填充墙砌筑完并间隔 15d 以后,方可补砌挤紧;补砌时,要求施工单位在双侧竖缝处采用高强度水泥砂浆嵌填密实。
 - 5) 砌体结构宜在砌筑完成后 60d 后再抹灰,并不应少于 30d。
- 6)通长现浇钢筋混凝土板带应一次浇筑完成,监理人员在浇筑之前检查现场人员是 否充足,检查机械运转情况,是否有备用机械设备,检查材料是否充足。
- 7) 框架柱间填充墙拉结筋采用预埋法留置,应满足砖模数要求,不应折弯压入砖缝; 梁底插筋应采用预埋留置。
- 8)采用粉煤灰砖、轻骨料混凝土小型空心砌块的填充墙与框架柱交接处,督促施工人员采用 15mm×15mm 木条预先留缝,待粉刷前再用 1:3 水泥砂浆嵌实。

4.3 配电室、综合楼外墙质量通病防治控制措施

- 1) 外墙抹灰应使用含泥量低于2%、细度模量不小于2.5的中粗砂。水泥使用前应做凝结时间和安定性检验。
- 2) 抹灰粉刷前应将基层表面的尘土、污垢、油渍等清除干净,并提前 1d 洒水湿润。 抹灰层与基层以及各抹灰层间必须粘结牢固,无空鼓、裂纹。

- 3)墙面抹灰砂浆要抹平、压实。
- 4) 外墙粉刷各层接缝位置应错开,接缝应留置在楼层混凝土梁或圈梁的中部。
- 5) 外墙涂料在使用前,应进行抽样检测。
- 6)外墙施工应采用双排脚手架,不得留置多余洞眼。外墙脚手孔应使用微膨胀细石 混凝土分次塞实成活,并在洞口外侧先加刷一道防水增强层。
- 7) 混凝土基层应采用人工凿毛;轻质砌块基层应采用满铺镀锌钢丝网等措施来增强基层黏结力。抹灰基层经检验合格后,方可进行下一道工序施工。
- 8)两种不同基体交接处的处理应符合墙体防裂措施的要求,并做好隐蔽工程验收记录。
- 9) 外墙抹灰必须分层进行,刮糙不少于两遍,每遍厚度宜控制在 6~8mm; 面层宜为 7~10mm,但不应超过 10mm。两层间的间隔时间不应小于 2~7d。室外气温低于 5℃时,不宜进行外墙粉刷。
 - 10) 外墙涂料找平腻子的厚度不应大于 1mm。
- 11) 腰线、雨篷、阳台等部位必须粉出不小于 2%的排水坡度,且靠墙体根部处应粉成圆角;滴水线宽度应为 10~20mm,厚度不小于 12mm,且应粉成鹰嘴式。
- 12)外墙面层涂料施工前应对墙面抹灰基层进行淋水试验,试验合格后,方可进行面层涂料或饰面砖铺贴。

4.4 配电室、综合楼门窗质量通病防治控制措施

- 1) 门窗安装前应进行三项性能的见证取样检测。
- 2)门窗框安装固定前应对预留墙洞尺寸进行复核,用防水砂浆刮糙处理,然后实施外框固定。固定后的外框与墙体应根据饰面材料预留 5—8mm 间隙。
- 3) 门窗安装应采用镀锌铁片连接固定,镀锌铁片厚度不小于 1.5mm, 固定点间距: 门窗拼接转角处 180mm, 框边处不大于 500mm。
- 4)门窗洞口应干净、干燥后施打发泡剂,发泡剂应连续施打、一次成型、充填饱满, 溢出门窗框外的发泡剂应在结膜前塞入缝隙内,防止发泡剂外膜破损。
- 5)门窗框外侧应留 5mm 宽、6mm 深的打胶槽口。内窗台应较外窗台高 10mm,外窗 底框下沿与窗台间应留有 10mm 的槽口。
- 6)打胶面应干净,干燥后施打密封胶,且应采用中性硅酮密封胶。严禁在涂料面层上打密封胶。

7) 窗扇的开启形式应方便使用,安全可靠,易于维修、清洗;当采用外开窗时,窗扇固定的措施应可靠。 组合窗中拼缝应采用专用密封材料进行防水处理。

4.5 配电室、综合楼屋面质量通病防治控制措施

- 1)屋面防水工程施工队伍应具有相应资质。施工前必须编制详细的施工方案,经监理审查确认后方可组织施工。
- 2) 埋入屋面现浇板的穿线管及接线盒等物件应固定在模板上,以保证现浇板内预埋物保持在现浇板的下部,使板内线盒、线管上有足够高度的混凝土层,并在接线盒上面配置钢筋网片,确保盒、管上面的混凝土不开裂。
- 3)屋面隔气层、防水层施工前,基层必须干净、干燥,并做好隐蔽验收记录。保温层、防水层不得在雨、雪天及(五级及以上)大风天气施工。
 - 4) 在屋面各道防水层或隔气层施工时应严格控制基层的含水率。
 - 5)屋面防水层施工与伸出屋面结构的处理应满足下列要求

屋面水落口、空调室外机底座、出屋面管道、屋顶风机口等,在与刚性防水层交接 处留 20×20mm 凹槽,嵌填密封材料,并做附加防水卷材增强层处理;

- 6)卷材防水层泛水收头施工: 当女儿墙为砖墙时, 泛水高度不小于 250mm, 防水层收头应在砖墙凹槽内用防腐木条加盖金属固定, 钉距不得大于 450mm, 并用密封材料封严。当女儿墙为钢筋混凝土时, 泛水高度不小于 250mm, 防水层收头用金属压条钉压固定, 钉距不得大于 450mm, 密封材料封边, 并在上部用镀锌铁皮等金属材料覆盖保护。
 - 7) 刚性细石混凝土防水屋面施工除应符合相关规范要求外,还应满足以下要求:
 - (1) 钢筋网片应采用焊接型网片。
- (2) 混凝土浇捣时,宜先铺三分之二厚度混凝土并摊平,再放置钢筋网片, 后铺三分之一的混凝土,振捣并碾压密实,收水后分二次压光。抹压时不应在表面加浆或撒干水泥。
- (3) 分格缝应上下贯通,缝内不得有水泥砂浆粘结。在分格缝和周边缝隙干燥后清理干净,用与密封材料相匹配的基层处理剂涂刷,待其表面干燥后立即嵌填防水油膏,密封材料底层应填背衬泡沫棒,分格缝上口粘贴不小于 200mm 宽的卷材保护层。
 - (4) 混凝土养护时间不应少于 14d。
 - 8) 屋面防水层施工完毕后,应进行蓄水试验。

4.6 箱、逆变变基础质量通病防治控制措施

- 1)要求现浇板采用大块新模板支撑,检查验收模板安装质量,严格控制模板上口标高,对模板支撑钢管进行加密加固,模板接缝必须紧密咬合,杜绝漏浆现场。
- 2)模板支撑的选用必须经过计算,除满足强度要求外,还必须有足够的刚度、稳定性,平整度及光洁度。配备足够数量的模板,保证按规范要求拆模。已拆除模板及其支架的结构,在混凝土强度达到设计要求的强度后方可承受全部使用荷载。
- 3) 采用减水率高、分散性能好、对混凝土收缩影响较小的外加剂,其减水率不应低于 8%。
 - 4) 预拌混凝土进场时检查验收入模塌落度。
- 5) 混凝土浇筑之前对钢筋、模板安装质量进行验收。严格控制现浇板的厚度和现浇板中钢筋保护层的厚度,特别是板面负筋保护层厚度,不使负筋保护层过厚而产生裂缝,要求现场采用垫块支撑控制。
- 6)基础浇筑后,督促施工人员在终凝后进行覆盖和浇水养护,养护时间不得少于7d;对掺用缓凝型外加剂或有抗渗性能要求的混凝土,不得少于14d。夏季应适当延长养护时间,以提高抗裂性能。冬季应适当延长保温和脱模时间,使其缓慢降温,以防温度骤变、温差过大引起裂缝。
- 7)基础施工应一次连续浇筑完成,禁止留设垂直施工缝,未经设计认可,不得留设水平施工缝。

4.7 光伏组件桩基础施工质量通病防治控制措施

- 1) 桩基施工过程中要对轴线,标高进行复测;钢桩的垂直度在施工过程中也要严格控制和监测。
- 2)施工单位要制定预制管桩施工专项施工方案,对现场施工人员在施工前要进行施工安全技术交底。

4.8 电缆沟及盖板质量通病防治控制措施

- 1) 砖砌电缆沟采用清水混凝土压顶,压顶钢筋放置位置应符合规范要求。
- 2) 电缆沟施工前应精确计算电缆沟长度与盖板合模并保证过水槽位置上为整块盖板。
- 3)电缆沟回填土前,应进行伸缩缝嵌缝处理,并经检验合格。砖砌电缆沟回填土时,应采取防治沟壁变形的措施。
 - 4)与电缆沟过路段、建筑物连接处应设防火墙。

- 5)盖板不得有裂缝及变形现象,与电缆沟采用柔性连接,保证盖板平整、稳定。电缆沟端头处不得有探头(局部悬空)盖板。
- 6)镀锌扁铁焊接应保证不变形,扁铁搭接长度不应小于2倍扁铁宽度,三面围焊,焊接质量应符合施工规范要求。

4.9 构支架质量通病防治控制措施

1) 严格按照规范和设计要求进行构支架加工,未经同意不得随意代用钢结构材料, 防止因材料的机械性能、化学成分不符合要求,

导致焊接裂纹甚至发生断裂等事故。

- 2) 应对钢构支架加工过程进行监造。钢结构焊接注意控制焊接变形,焊接完成及时清除焊渣及飞溅物,组装构件必须在试组装完成后进行热镀锌,构件镀锌后在厂内将变形等缺陷消除完毕,并对排锌孔进行封堵后方可出厂。
- 3) 钢构支架镀锌不得有锈斑、锌瘤、毛刺及漏锌。钢构支架出厂装车前应对运输过程中易磨损部位进行成品保护,并采用专用吊带进行装卸,严禁碰撞损伤。
- 4)对进场构件进行严格检查,按照规范及供货技术合同要求检查构件出厂保证资料 是否完善、齐全、规范。构件表面观感、外径、长度、弯曲度不满足要求的拒绝接收。
 - 5)运输过程中发生杆头板等个别变形,在现场宜采用机械方式进行调校。
 - 6) 钢梁组装时按照钢梁设计预拱值进行地面组装。
- 7) 离心混凝土杆对口处焊接后,应对金属部分(包括非焊接处)彻底打磨除锈,然后进行防腐处理。防锈漆涂刷前在两端钢圈挡浆筋以外部分粘贴胶带纸,防止污染混凝土杆段。焊口冷却前严禁进行油漆涂刷。
- 8) 离心混凝土杆排焊时,杆段支垫要稳固、可靠,保证支垫水平,拉线效验整体弯曲度不超过有关规范要求。
- 9) 离心混凝土杆杆头板施工焊接时宜采用(跳焊、降温等)合理的焊接工艺,抑制变形。如个别杆头板出现变形,需进行机械校正。
 - 10) 安装螺栓孔不得采用气割加工。
- 11) 离心混凝土杆接地扁钢安装前应校正平直,弯制应采用冷弯工艺,扁钢应紧贴设备支柱或加装不锈钢紧固带,不锈钢紧固带装设高度及接头位置应一致;在周围回填土时严禁扰动扁钢底部,避免造成上部变形弯曲。

4.10 道路及散水质量通病防治控制措施

- 1) 土料须采用就地挖出的含有机质小于 5%的粘性土或塑性指数大于 4 的粉土,不得使用表面耕植土、淤泥、冻土或夹有冻块的土; 土料应过筛, 粒径不得大于 15mm。
- 2)对基槽(坑)应先验槽,清除松土,不得有表层耕植土,并打两遍底夯,要求平整干净。
- 3) 路基回填应分段分层进行夯实,每层回填厚度由夯实或碾压机具种类决定并按照 规范要求进行。 根据设计要求的压实系数由试验确定夯打或碾压遍数,每层施工结束 后检查地基的压实系数,经见证取样试验合格后方可进行下一道工序施工。
- 4)基层施工时,应将基层材料集中搅拌,并采用摊铺机进行摊铺,待基层整平压实后,严格进行养生,防止基层出现干缩或温缩裂缝;为减少路基土的压实变形,增加路基强度和稳定性,必须认真进行压实,特别要加强路堤边部碾压,使路堤横向的密度尽可能均匀。
 - 5) 混凝土道路路面采用专用机械一次浇筑完成。
- 6)根据施工现场的实际,认真编制混凝土浇筑方案,尽量避开当日高温时段施工。 科学合理地确定浇筑顺序和施工缝的留置。
 - 7) 道路遇过路电缆沟处,电缆沟两侧应设变形缝。
 - 8) 道路面层宜采用抗滑、 耐磨措施。
 - 9) 郊区型道路、散水棱角宜作倒圆角处理。
- 10) 收面时不得任意在路面上走动,面层应一次成活,采用原浆收面,禁止加浆或撒干水泥收面。
- 11)与电气安装紧密结合,合理安排道路浇筑时间,路面混凝土养护要派专人负责,并在终凝后及时开始养护,养护期为 14d,路面养护期间严禁行人、车辆在上面走动,直至混凝土强度达到要求后方可通行,通行速度不得大于 5km/h,防止车辆刹车破坏或污染道路面层。
- 12) 胀缝应与路面中心线垂直,缝壁上下垂直,缝宽一致,上下贯通,缝中不得连浆。当混凝土达到设计强度 25%~30%时可进行缩缝切割,填缝前,采用压力水或压缩空气彻底清除接缝中砂石及其他污染物,确保缝壁及内部清洁、 干燥。两侧粘贴美纹纸,防止污染面层。灌注高度,夏天宜与板面齐平,冬天宜低于板面 1~2mm;填缝要求饱满、均匀、连续贯通。
 - 13) 道路坡度正确, 防止积水。

4.11 站区围墙质量通病防治控制措施

1) 围墙围护网变形、倾斜现象。

电气安装调试工程部分

4. 12 35kV 站用配电装置安装质量通病防治措施

- 1) 充油(气)设备渗漏主要发生在法兰连接处。安装前应详细检查密封圈材质及法兰面平整度是否满足标准要求;螺栓紧固力矩应满足厂家说明书要求。
- 2)在设备支柱上配置隔离开关机构箱支架时,电(气)焊不得造成设备支柱及机构箱污染。为防止垂直拉杆脱扣,隔离开关垂直及水平拉杆连接处夹紧部位应可靠紧固。
- 3) 在槽钢或角钢上采用螺栓固定设备时,槽钢及角钢内侧应穿入与螺栓规格相同的楔形方平垫,不得使用圆平垫。
 - 4)结合滤波器到电压互感器(CVT)的连线应采用绝缘导线连接。
 - 5) 充油设备套管使用硬导线连接时,套管端子不得受力。
- 6)加强母线桥支架、槽钢、角钢、钢管等焊接项目验收,以保证几何尺寸的 正确、焊缝工艺美观。
- 7)对设备安装中的穿芯螺栓(如避雷器、箱变散热器等),要保证两侧螺栓露出长度一致。
 - 8) 电气设备联接部件间销针的开口角度不得小干 60°

4. 13 母线施工质量通病防治措施

- 1) 硬母线制作要求横平竖直,母线接头弯曲应满足规范要求,并尽量减少接头。
 - 2) 支持瓷瓶不得固定在弯曲处,固定点应在弯曲处两侧直线段 250mm 处。
 - 3)相邻母线接头不应固定在同一瓷瓶间隔内,应错开间隔安装。
- 4) 母线平置安装时,贯穿螺栓应由下往上穿;母线立置安装时,贯穿螺栓应由左向右、由里向外穿,连接螺栓长度宜露出螺母2—3扣。
- 5) 直流均衡汇流母线及交流中性汇流母线刷漆应规范,规定相色为"不接地者用紫色,接地者为紫色带黑色条纹"。
- 6) 硬母线接头加装绝缘套后,应在绝缘套下凹处打排水孔,防止绝缘套下凹处积水、冬季结冰冻裂。
 - 7)户外软导线压接线夹口向上安装时,应在线夹底部打直径不超过 Φ 8mm 的

- 泄水孔, 以防冬季寒冷地区积水结冰冻裂线夹。
- 8) 母线和导线安装时, 应精确测量档距, 并考虑挂线金具的长度和允许偏差, 以确保其各相导线的弧度一致。
- 9). 短导线压接时,将导线插入线夹内距底部 10mm,用夹具在线夹入口处将导线夹紧,从管口处向线夹底部顺序压接,以避免出现导线降起现象。
- 10) 软母线线夹压接后,应检查线夹的弯曲程度,有明显弯曲时应校直,校直后不得有裂纹。

4. 14 箱变和逆变器安装质量通病防治措施

- (1) 打开包装箱,分别检查箱变和逆变器及配电柜的完好情况:
- 1、检查箱变和逆变器、配电柜各开关初始位置是否正确,断开所有输出、输入开关:
 - 2、将主接线盒的方阵输入电缆分别接至控制器各端子;
 - 3、将逆变器交流输出电缆接至交流配电箱的输入端:
 - 4、将逆变器直流输入电缆接至控制器负载输出端;
 - 5、将外电网电缆接至交流配电箱的输出端子。
- (2). 箱变和逆变器、配电柜安装要牢固可靠,主控制屏、继电保护屏和自动 装置屏等应采用螺栓固定,不得与基础型钢焊死。安装后端子箱立面应保持在一 条直线上。
- (3). 电缆较多的屏柜接地母线的长度及其接地螺孔宜适当增加,以保证一个接地螺栓上安装不超过2个接地线鼻的要求。
- (4). 箱变和逆变器、配电、控制、保护用的屏(柜、箱)及操作台等的金属框架和底座应接地或接零。
 - (5) 电源馈线敷设
 - 1、方阵电缆的规格和敷设路由应符合设计规定。
 - 2、馈电线穿过穿线管后应按设计要求对管口进行防水处理。
 - 3、电缆及馈线应采用整段线料 不得在中间接头。
- 4、电源馈线正负极两端应有统一红(正极)蓝 (负极)标志, 安装后的电缆剖头处必须用胶带和护套封扎。
 - (6) 通电检查
 - 1、通电试验

- ①电压表、电流表表针指在零位、无卡阻现象。
- ②开关、闸刀应转换灵活,接触紧密。
- ③熔丝容量规格应符合规定、标志准确。
- ④接线正确、无碰地、短路、虚焊等情况,设备及机内布线对地绝缘电阻应符合厂家说明书规定。
 - 2、通电试验步骤
 - ①方阵输入回路应设有防反充二极管。
 - ②应能测试方阵的开路电压 、短路电流。
 - ③输出电压的稳定精度应符合设计要求。
 - ④能提供直流回路的电流监视信号。
- - ⑥各电源馈线的电压降应符合设计规定。
 - ⑦方阵输出端与支撑结构间的绝缘电阻、耐压强度应符合设计规定。

4. 15 电缆敷设、防雷接地与防火封堵质量通病防治措施

- (1) 整体汇线
- 1)整体汇线前事先考虑好走线方向,然后向配电柜放线.太阳能光伏组件连线应采用双护套多股铜软线,放线完毕后可穿 ⊄ 32PVC 管。线管要做到横平竖直,柜体内部的电线应用色带包裹为一个整体,以免影响美观性。
 - 2) 连接太阳能光伏组件连线。同样要先断开开关。
- 3)连接控制器到逆变器的电源连接线。负载线应根据太阳能电站和移动直放站的位置,去确定架空或地埋的方式。
 - (2) 电缆线敷设

施工准备→放线→电缆沟开挖→预埋配管和埋件→电缆敷设→电缆沟回填→ 接线

- 1)施工准备:电缆穿越墙体、基础和道路时均应采用镀锌保护管,保护管在敷设前进行外观检查,内外表面是否光滑,电缆管切割后,管口必须进行钝化处理,以防损伤电缆,也可在管口上加装软塑料套。电缆管的焊接要保证焊缝观感工艺。二次电缆穿管敷设时电缆不应外露
 - 2) 预埋配管: 暗配的线管宜沿最短的线路敷设并减少弯曲, 埋入墙或地基内

的管子, 离表面的净距离不应小于 15mm, 管口及时加管堵封闭严密。

- 3)管内穿线:管路必须做好可靠的跨接,跨接线端面应按相应的管线直径选择。
- 4) 电缆敷设: 电缆敷设前电缆沟应通过验收合格; 铠装电缆直接埋地敷设, 电缆埋设段内严禁接头。
- 5)整体防腐:施工完工后应对整个钢结构进行整体防锈处理,可用防锈漆进行涂装,但涂装次数不得少于二遍,中间间距时间不得少于8小时。
- (3) 敷设进入端子箱、汇控柜及机构箱电缆管时,应根据保护管实际尺寸进行开孔,不应开孔过大或拆除箱底板进入机构箱的电缆管,其埋入地下水平段下方的回填土必须夯实,避免因地面下沉造成电缆管受力,带动机构箱下沉。
 - (4) 固定电缆桥架连接板的螺栓应由里向外穿,以免划伤电缆。
- (5) 电缆沟十交叉字口及拐弯处电缆支架间距大于 800mm 时应增加电缆支架,防止电缆下坠。转角处应增加绑扎点,确保电缆平顺一致、美观、无交叉。电缆下部距离地面高度应在 100mm 以上。电缆绑扎带间距和带头长度要规范、统一。
- (6)不同截面线芯不得插接在同一端子内,相同截面线芯压接在同一端子内的数量不应超过两芯。插入式接线线芯割剥不应过长或过短,防止紧固后铜导线外裸或紧固在绝缘层上造成接触不良。线芯握圈连接时,线圈内径应与固定螺栓外径匹配,握圈方向与螺栓拧紧方向一致;两芯接在同一端子上时,两芯中间必须加装平垫片。
 - (7) 端子箱内二次接线电缆头应高出屏(箱)底部 100~150mm。
- (8) 电缆割剥时不得损伤电缆线芯绝缘层;屏蔽层与 4mm2 多股软铜线连接引出接地要牢固可靠,采用焊接时不得烫伤电缆线芯绝缘层。
- (9) 电流互感器的 N 接地点应单独、直接接地,防止不接地或在端子箱和保护屏处两点接地;防止差动保护多组 CT 的 N 串接后于一点接地。电流互感器二次绕组接地线应套端子头,标明绕组名称,不同绕组的接地线不得接在同一接地点。
- (10) 监控、通讯自动化及计量屏柜内的电缆、光缆安装,应与保护控制屏柜接线工艺一致,排列整齐有序,电缆编号挂牌整齐美观。
- (11)控制台内部的电源线、网络连线、视频线、数据线等应使用电缆槽盒统 一布放并规范整理,以保证工艺美观。
 - (12) 防雷接地安装

- 1)施工顺序:接地极安装 接地网连接 接地网由接地体和接地扁钢组成。地网分布在立柱支架周围,接地体采用热镀锌角钢。接地极一端加工成尖头形状,方便打入地下。
- 2)接地线应采用绝缘电线,且必须用整线,中间不许有接头。接地线应能保证短路时热稳定的要求,其截面积不得小于6mm2,避雷器的接地线应选择在距离接地体最近的位置。接地体与接地线的连接处要焊接;接地线与设备可用螺栓连接。
- 3)接地扁铁采用热镀锌扁钢,接地扁钢应垂直与接地体焊接在一起;以增大与土壤的接触面积。最后扁钢和立柱的底板焊接在一起.焊后应作防腐处理,应采用防腐导电涂料.回添土尽量选择碎土,土壤中不应含有石块和垃圾。

4. 16 光伏组件组串及支架安装质量通病防治措施

- (1) 安装前的准备工作
- 1) 安装组件前,应根据组件参数对每个光伏组件组件进行检查测试其参数值 应符合产品出厂指标。
 - 2) 一般测试项目有开路电压、短路电流。
 - 3) 应挑选工作参数接近的组件装在同一子方阵内。
 - 4) 应挑选额定工作电流相等或相接近的组件进行串联。
 - 5) 组件接线盒上穿线孔应加工完毕。
 - 6) 熟悉设备安装技术说明。
 - 7) 检查施工单位人员、材料、机具、方案落实情况。
 - 8) 检查设备基础尺寸、标高是否和设计要求相一致。
 - (2) 组件支架系统安装
 - 1) 支架安装

钢支柱应竖直安装,与砼良好的结合。连接槽钢底脚时,槽钢底脚的对角线误差不大于±10mm,检验底梁(分前后横梁)和固定块。如发现前后横梁因运输造成变形,应先将前后横梁校直。

具体方法如下:

① 先根据图纸把钢支柱分清前后,焊接钢支柱桩顶封板,然后防腐处理。再根据图纸安装支柱间的连接杆,安装连接杆时应注意连接杆应将表面放在光伏站的外侧,并把螺丝拧至六分紧。

- ② 根据图纸区分前后檩条 C型钢,以免将其混装。
- ③ 将前、后固定块分别安装在前后横梁上,注意勿将螺栓紧固。
- ④ 支架前后横梁安装。将前、后横梁放置于钢支柱上,连接底横梁,并用水平仪将底横梁调平调直,并将底梁与钢支柱固定。
- ⑤ 调平好前后梁后,再把所有螺丝紧固,紧固螺丝时应先把所有螺丝拧至八分紧后,再次对前后梁进行校正。合格后再逐个紧固。
- ⑥ 整个钢支柱安装后,应对钢支柱底与砼接触面进行水泥浆填灌,使其紧密结合。
 - 2) 组件固定件安装
 - ① 检查组件固定件的完好性。
- ② 根据图纸安装组件固定件。为了保证支架的可调余量,不得将连接螺栓紧固。
 - 3) 组件支架安装面的粗调
 - ① 调整首末两根光伏组件固定杆的位置的并将其紧固紧。
 - ② 将放线绳系于首末两根光伏组件固定杆的上下两端,并将其绷紧。
 - ③ 以放线绳为基准分别调整其余光伏组件固定杆,使其在一个平面内。
 - ④ 预紧固所有螺栓。
 - 4) 光伏组件的进场检验
 - ① 光伏组件应无变形、玻璃无损坏、划伤及裂纹。
- ② 测量光伏组件在阳光下的开路电压,光伏组件输出端与标识正负应吻合。 光伏组件正面玻璃无裂纹和损伤,背面无划伤毛刺等。
 - 5) 太阳能光伏组件安装

机械准备:用叉车把光伏组件运到方阵的行或列之间的通道上,目的是加快施工人员的安装速度。在运输过程中要注意不能碰撞到支架,不能堆积过高(可参照厂家说明书)。

- ①光伏组件在运输和保管过程中,应轻搬轻放,不得有强烈的冲击和振动, 不得横置重压。
- ②光伏组件的安装应自下而上,逐块安装,螺杆的安装方向为自内向外,并 紧固光伏组件螺栓。安装过程中必须轻拿轻放以免破坏表面的保护玻璃;光伏组件的联接螺栓应有弹簧垫圈和平垫圈,紧固后应将螺栓露出部分及螺母涂刷油漆,

做防松处理。并且在各项安装结束后进行补漆;光伏组件安装必须作到横平竖直,同方阵内的光伏组件间距保持一致;注意光伏组件的接线盒的方向。

- 6) 光伏组件调平
- ① 将两根放线绳分别系于光伏组件方阵的上下两端,并将其绷紧。
- ② 以放线绳为基准分别调整其余光伏组件,使其在一个平面内。
- ③ 紧固所有螺栓。
- 7) 光伏组件接线
- ① 根据电站设计图纸确定光伏组件的接线方式。
- ② 光伏组件连线均应符合设计图纸的要求。
- ③ 接线采用多股铜芯线,接线前应先将线头搪锡处理。
- ④ 接线时应注意勿将正负极接反,保证接线正确。每串光伏组件连接完毕后,应检查光伏组件串开路电压是否正确,连接无误后断开一块光伏组件的接线,保证后续工序的安全操作。
 - ⑤ 将光伏组件串与控制器的连接电缆连接,电缆的金属铠装应接地处理。
 - 8) 方阵布线
- ① 组件方阵的布线应有支撑、固紧、防护等措施,导线应留有适当余量 布线方式应符合设计图纸的规定。
- ② 应选用不同颜色导线作为正极(红)负极(蓝)和串联连接线,导线规格 应符合设计规定。
- ③ 连接导线的接头应镀锡 截面大于 6m m²的多股导线应加装铜接头(鼻子), 截面小于 6m m²的单芯导线在组件接盒线打接头圈连接时 线头弯曲方向应与紧固 螺丝方向一致 每处接线端最多允许两根芯线 ,且两根芯线间应加垫片,所有接 线螺丝均应拧紧。
 - ④ 方阵组件布线完毕 应按施工图检查核对布线是否正确。
 - ⑤ 组件接线盒出口处的连接线应向下弯曲 防雨水流入接线盒。
 - ⑥ 组件连线和方阵引出电缆应用固定卡固定或绑扎在机架上。
 - ⑦ 方阵布线及检测完毕 应盖上并锁紧所有接线盒盒盖。
 - ⑧ 方阵的输出端应有明显的极性标志和子方阵的编号标志。
 - 9) 方阵测试
 - ① 测试条件: 天气晴朗, 太阳周围无云, 太阳总辐照度不低于 700W/m2。在

测试周期内的辐照不稳定度不应大于±1%,辐照不稳定度的计算按《地面用光伏组件电性能测试方法》中相关规定。

- ②被测方阵表面应清洁。
- 10) 技术参数测试及要求:
- ① 方阵的电性能参数测试按《地面用光伏组件电性能测试方法》和 《光伏组件组件参数测量方法(地面用)》的有关规定进行。
 - ② 方阵的开路电压应符合设计规定。
 - ③ 方阵实测的最大输出功率不应低于各组件最大输出功率总和的60%。
 - ④ 方阵输出端与支撑结构间的绝缘电阻不应低于 50MΩ。